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We consider a conjugate problem of free convection of a non-Newtonian fluid with 
a power law in a plane vertical channel. We discuss the general formulation of 
the problem, give an analysis of particular cases, and show the effect of the 
parameters of the problem on convection. 

i. There has recently been increased interest in investigations on the convection of 
nonlinear viscous fluids in channels [1-3]. The problem, however~ has still not yet been 
analyzed in a rigorous formulation. 

We consider one-dimensional steady-state convection of a non-Newtonian fluid in a verti- 
cal channel with heat-conducting walls. In the fully developed one-dimensional regime the 
initial system of equations has the form [i] 

t d-7-~ + g ~  ( r -  to) = c, (1) 

o = ~  d2T  q_q. (2) 
d ~  

We write the heat-conduction equations for walls with interior sources of heat: 

Z d2T1 &q~=O,  - - ( h - ] - l ) ~ x ~ - - l ,  (3) 
1 dx--~/- 

" d~T~ +q2=O, l ~ x ~ ( h + l ) .  (3') 
~ dx ~ -  

In the general case the index of consistency of the fluid k and the parameter of rheo- 
logical nonlinearity n depend on the temperature. The non-Newtonian properties are weakened 
during heating, i.e., the thermal dependence of the properties can be determined by the re- 
lations (k*~, n§ 

k (T) = A exp (--bT/To), n (T) = 1 -- [ (T) for d[ (T____~_) < 0. 
dT 

Then k+A exp (--b) = ~, f(T)-7 0, and T+To, where A and b are constants. 

The interior heat source q can be positive or negative, constant or variable. 

At the boundaries of the channel with the fluid, the velocity vanishes (condition of ad- 
hesion) or is nonzero for the case of reactions (physical and chamical) with the formation of 
mass inhomogeneities. In addition, the conditions of continuity of temperature and of the 
normal component of the heat flux should be satisfied. For the temperature on the exterior 
surfaces we can be given boundary conditions of the first or second kind. 

2. We consider the case of temperature-independent thermophysica! properties. For dis- 
tance, velocity, pressure, and temperatue, we choose, respectively, the four scales l, V = 
(9g~AT[n+I/k) I/n; P=og~ATI , AT, where 2AT is the temperature difference between the walls. By 
introducing the dimensionless quantities ~=x/[. O=(T--T0)/AT, 5=v/V, and p = p/p, we trans- 
form Eqs. (1)-(3') to the form (the % symbol is dropped) 
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d ,I dv [I-l du ) dp 
F, (4) 

- - @ s = 0 ,  
dx z 

" xZ + s l = 0 , ,  - -  1 + ~ x ~ l ,  
\ 

dx 2 q - s 2 = 0 ,  l ~ x ~  1 q- , 

(5) 

(6) 

(7) 

x - - - f - l :  v ~ O ;  0 ~ - 0 1 ,  
dO Z1 dO1 

dx ~ dx 

x=• 
me! 

('+v)" o,• 

We represent the boundary conditions for the temperature of the fluid in a different 
form. Single integration of Eqs. (6) and (7) with the appropriate boundary conditions (8) 

x ~ - - l :  d O  1 + ~  s (_~h xl-~ 
dx ~ 21~ ~, lJ ' 

x = §  1: dO _. 1 - - e  + s~ ( h ~ ,  

leads to the equations 

where the coupling parameter @ = %h/X1~ characterizes the ratio of the thermal conductivity 

and the thickness in the liquid-wall system. For x=• in agreement with [4] we have 
\17 

e ( • 1 7 7  

We write the solution of gq. 
tions (9) 

(5) for the temperature field with the boundary condi- 

s ( l + ' 2 q 0 q - ( h )  
e (x) = V T 

2 (so + sl) 

2 

4 q- (s2 7-  sl) 
/ S + x- - - -~-x: .  
4 "z 

(8) 

(9) 

(io) 

Substituting (i0) into (4) we obtain 

d ( d v  '~-i d r )  
d'-~ ~ ~ ---- F - -  E - -  2Bx q- 3DxK 

Integrating (ii), we obtain the velocity distribution in the fluid 

v (x) ~ [ ]Dx a - -  Bx 2 q- (F - -  E) x -~.- D,I ' /n  sign (Dx a - -  Bx z q- (F - -  E) x + D1) dx q- D z. 

Here, we use the notation 

4 +. (so_ -- $1) 
S 

3D = -)--, 2B - -  4 (1 -k x~) ' 

e = ( Z ~  2 (s2 + s,) + s (i + 2,); 
\ z /  4 Y . 

(ii) 

(i2) 

and D: and D2 are integration constants, 
locity. 

3. We consider particular cases. 
has the form 

determined from the boundary conditions for the ve- 

For a Newtonian fluid (n = i), the velocity profile 
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Fig. i. Velocity profiles 
for ~ = 3 for various 
values of n: i) n = 2, 2) 
n = 3, n = 4. 
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Fig. 2. Velocity profiles 
for n = 2 for various 
values of 4: I) ~ = i, 2) 
~ = 2, 3) ~ = 3. 

v ( x )  = s 
- N -  (x ; - -  1) + 

4 q- (s~ - -  S l )  

24 (I  + ~) (x - -  x 3) - -  20s ( x ~ - -  1) .  

Such a velocity distribution was considered in [5]. We note that for heat sources in the 
walls that are equal in intensity (ql = q2), the velocity of the fluid ceases to depend on 
them. 

In the absence of a heat source in the fluid (q = 0) and for very thin walls (h = 0) or 
for ~I § ~ (~ = 0), the velocity distribution has the form 

v (x) . . . .  2 + D1 sign q- D1 dx. 

This result agrees with that obtained earlier [6]. 

For the case s = s~ = s2 = 0 the temperature and velocity profiles are described by the 
relations 

% 
e ( ~  - 

I + ~  

v(x) = " ' sign @ D1 dx. (13)  
2 (1 + ~) -r 2 (1 + ~) 

The integration constant D: is determined from the boundary condition 

(' _ _  X 2 1 / n  X 2 

2 ( 1 @ ~ )  @D1 sign - -  2 ( l q - ~ )  ~D1 dx=O. (14)  

The r e s u l t s  (13)  and  ( 1 4 ) ,  c a l c u l a t e d  on a c o m p u t e r ,  a r e  shown i n  F i g s .  ! and  2.  The v e l o c i t y  
p r o f i l e s  h a v e  two e x t r e m a  w i t h  e q u a l  a b s o l u t e  v a l u e s .  F o r  a f i x e d  v a l u e  o f  ~ ( F i g .  1) w i t h  
increasing n for a dilatant fluid (n> i) the velocity distribution acquires narrower extrema, 
which agrees with the data of [6]. For a single fluid (the value of n is fixed) with increas- 
ing coupling parameter ~ the convection is weakened (Fig. 2). Such mechanical behavior 
agrees with the physical considerations. 
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METHOD OF STUDYING VISCOELASTIC PROPERTIES OF POROUS 

POLYMER FILMS 

V. E. Savchenko UDC 539 .3 :536~  

A method is proposed for studying the viscoelasticity of polymer films with the 
aid of a quartz resonator. Results are reported pertaining to thin copper films. 

In order to produce reliable quartz-type air humidity transducers, devices of great 
practical importance, one must know the viscoelastic properties of thin porous coatings. In 
another study [I] was demonstrated the feasibility of using a compound vibrator for solid 
specimens of sections smaller than the end section of the piezoelectric bar. With the use of 
such specimens it becomes possible to study the viscoelastic properties of polymers in which 
energy losses are high and the acoustic velocity is low. Unlike a conventional compound vi- 
brator, the one in the method to be described here the piezoelectric cell has a specimen 
(film) deposited on its entire surface. 

The diagram in Fig. 1 depicts an X-cut piezoelectric cell. The excitation electrodes 
are deposited on the lo~m face. The entire surface of this cell is coated uniformly with a 
polymer film of thickness 4' by immersion in a preheated 3-5% solution of the polymer in an 
appropriate solvent and subsequent spinning in a centrifuge. This process yields then uni- 
form films with excellent adhesion to the surface of the piezoelectric cell. When the latter 
vibrates and the adhesion is strong, the film will perform the same vibrations as the cell 
surface, i.e., there will be no sliding of the film. Assuming that the piezoelectric cell 
vibrates longitudinally along the y axis and that its strains e are equal to strains in the 
film, one can write the equation of motion for the cell with film in the form 

(m~ + m2) ~ ~ (N~ + N~) s + (G~ + G2) s = F. (1) 

According to the electrochemical analogy, the electric-circuit equation equivalent to 
Eq, (i) can be written as 

C 1 (L1-kL2)$+(R1+R2)q+ --~ + q=U. (2) 

The relation between parameters in Eq. (i) and those in Eq. (2) can be defined in terms of 
the coefficient 6 [2] 

= 2L1/ml := 2(L1 + L2)/(ml + m~). (3) 

The equivalent electrical parameters L: and L~, R: and R~, C: and C= are determined through 
measurement [3]. The reproducibility of results is high. The resonance frequencies f: of 
the piezoelectric cell and f2 of the specimen with the cell are determined from Eq. (i), 
namely 

f~ = [Od2~m~ 1 ,/2, (4) 

f2 = [(Gt @ G~)/2~ z (m, + m2) 1/2. (5) 

Expressions (4) and (5) are used for calculating the stiffness parameters G: and Ga. The 
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